Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Revista
Tipo del documento
Intervalo de año
1.
Viruses ; 13(11)2021 11 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1551629

RESUMEN

Many countries in sub-Saharan Africa have experienced lower COVID-19 caseloads and fewer deaths than countries in other regions worldwide. Under-reporting of cases and a younger population could partly account for these differences, but pre-existing immunity to coronaviruses is another potential factor. Blood samples from Sierra Leonean Lassa fever and Ebola survivors and their contacts collected before the first reported COVID-19 cases were assessed using enzyme-linked immunosorbent assays for the presence of antibodies binding to proteins of coronaviruses that infect humans. Results were compared to COVID-19 subjects and healthy blood donors from the United States. Prior to the pandemic, Sierra Leoneans had more frequent exposures than Americans to coronaviruses with epitopes that cross-react with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), SARS-CoV, and Middle Eastern respiratory syndrome coronavirus (MERS-CoV). The percentage of Sierra Leoneans with antibodies reacting to seasonal coronaviruses was also higher than for American blood donors. Serological responses to coronaviruses by Sierra Leoneans did not differ by age or sex. Approximately a quarter of Sierra Leonian pre-pandemic blood samples had neutralizing antibodies against SARS-CoV-2 pseudovirus, while about a third neutralized MERS-CoV pseudovirus. Prior exposures to coronaviruses that induce cross-protective immunity may contribute to reduced COVID-19 cases and deaths in Sierra Leone.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , SARS-CoV-2/inmunología , Distribución por Edad , Alphacoronavirus/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Betacoronavirus/inmunología , Donantes de Sangre , Proteínas de la Nucleocápside de Coronavirus/inmunología , Protección Cruzada , Reacciones Cruzadas , Epítopos , Femenino , Humanos , Masculino , Fosfoproteínas/inmunología , Sierra Leona , Estados Unidos , Pseudotipado Viral
2.
Cell ; 184(19): 4939-4952.e15, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1330684

RESUMEN

The emergence of the COVID-19 epidemic in the United States (U.S.) went largely undetected due to inadequate testing. New Orleans experienced one of the earliest and fastest accelerating outbreaks, coinciding with Mardi Gras. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large-scale events accelerate transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana had limited diversity compared to other U.S. states and that one introduction of SARS-CoV-2 led to almost all of the early transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras, and the festival dramatically accelerated transmission. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate epidemics.


Asunto(s)
COVID-19/epidemiología , Epidemias , SARS-CoV-2/fisiología , COVID-19/transmisión , Bases de Datos como Asunto , Brotes de Enfermedades , Humanos , Louisiana/epidemiología , Filogenia , Factores de Riesgo , SARS-CoV-2/clasificación , Texas , Viaje , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA